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Final Report for N00014-81-K-0360, SRO-100

Lawrence Snyder

The following text describes technical achievements for the above mentioned contract, en-

titled "The Blue CHiP Project". It must be noted that the work sponsored by this contract

was a portion of a large, on-going project that also received funding from Contract

N00014-80-K-0816. Since the Project is on-going, this report will detail significant progress of

only the contract period.

Since the project is organized into five research topic areas - theory, algorithms, architec-

ture, software and VLSI - it is convenient to organize the report into those five subheadings.

See Figure I for a diagram relating major components of the project.

Theory
Theoretical analysis has been of great use in other areas of the project. Here we describe

those results that are of particular interest in their own right.

Minimax edge length. The embedding of a graph into the plane is a useful abstraction for

the layout of a circuit into a VLSI technology, or the specification of the communication

structure of a CHiP program in the CHiP computer's lattice. Since signals take time to

propagate along a wire, the length of a line in an embedding will indicate the amount of time

for a particular communication and the longest edge length of an embedding will indicate the

minimum clock cycle for a circuit. It is for these reasons that we have studied the minimax

edge length of graph embeddings, i.e. graph layouts that have the shortest maximum length

edge over-all embeddings. Since most circuit graphs contain a tree as a subgraph, we have

focused on the minimax edge length in binary trees.

Tht first set of results concerns the rather surprising fact that it is not possible to achieve

simultaneously the shortest possible edges and the smallest possible area of a layout[l]. For

example, trees with their n leaves on the perimeter of a convex region (the typical case in
N'LSI) may have area fl(n log n) or have minimum-maximum edge length fl(n/log n), but not

._#h. When the area is minimum, the edge length is O(n/log log n) and when the edge length

is minimum, the area is O(nl+e), . > 0.

The second set of results concerns the simultaneous achievement of minimum area, min-

imum edge length and planarity of layouts for binary trees[2]. This result builds on work of

Valiant and is surprising when one considers the number of constraints simultaneously ach-

ieved.
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Tile Salvage. If one considers a VLSI wafer as a region covered with tiles, then after the

wafer has been probed, the dysfunctional chips are given red dots, the wafer is diced.up
and the functional tiles are saved. Suppose now that the wafer is a checker board of black
and white tiles and the same process is repeated, except that now we wish to save adjacent,
functional black-white pairs. (The purpose, of course, is to get larger chips by patterning half

the circuit on the black tiles and the other half on the white tiles).

We have shown that there is an efficient (O(n25)) algorithm for maximizing the connected,

functional, black-white pairs[3]. The basic technique is to use a variant of the "marriage"

problem solution. Unfortunately, from the point of view of the motivation, the problem of
maximizing the adjacent, functional red-white-blue-green quads on a wafer of alternating

rows of alternating red-white and alternating blue-green tiles is NP-complete. That is, the
problem of making bigger chips by grouping four good adjacent tiles together is computation-

ally intractable. This negative result is not as negative as it first appears however. First, the
wafer is not "arbitrarily large" as required by the theory of intractability. Second, one need
not always maximize the salvaged chips - it is possible to waste a few. Third, our work has

stimulated the work of Brenda Baker at Bell Labs to develop very good heuristic solutiont

that supersede the ones we proposed. Best of all, however,this work has lead to a much more
basic understanding of the computational difficulty of general planar layout problems, and
with Berman, Leighton and Shor, we have solved a number of open problems such as planar
graph partitioning. These results, as yet unpublished, largely explain the sources of com-
plexity for planar layouts.

Coordinauion. The old theory of cellular automata, due to von Neumann, assumed that all

cells read and write simultaneously in every direction on every step. H. T. Kung's systolic ar-
rays do this simultaneous I/O too. But the more general parallel algorithms hosted by the
CHiP Computer cannot assume that the 1/0 is s' regular. Processors must be assumed to
read and write when necessary, oblivious to the actions of the senders and receivers. It is for
this reason that the CHiP machine assumes a 'data driven' model of computation: reads,
proceed only after data has arrived, and writes send unless doing so will cause buffer over-
flow. Such a scheme is safe but it is not very efficient because of the overhead of the hand- r

shaking that must take place to support the asynchronous 1/0 times.

We have developed(4] a model of parallel computation in which the above mentioned
phenomena can be expressed: synchronous I/O, data driven 1/0, asynchronous 1/O, etc.

Moreover, the model is capable of comparing the various strategies fairly, because each com-
munication paradigm is a parameter to a common model. This is the first time that different Codes

.d/or

...



3

communication mechanisms have been so unified. Moreover, we have done more; we have
made these theoretical results practical.

A system of parallel processors is said to be coordinated if each write in the system is im-
mediately (ie. on the next step) answered with a read. It has been shown that the problem of
recognizing whether a system is coordinated is P-SPACE hard, i.e. computationally

intractable[5]; this result is proved only for completeness. More positively, it has also been
shown that there are polynomial algorithms for determining whether certain restricted classes
of parallel processes are coordinated. Furthermore, it has been shown[6 that there are poly-
nomial time algorithms for constructing coordinated parallel systems from certain families
that are not coordinated. This result is significant because it implies that a compiler's code
generator could accept programs that were written using an 'expensive' (ie. high in
overhead) data driven semantics and convert them into efficient coordinated programs. This
implication has motivated a large amount of software work to develop such code generators.

They are now complete and experiments are being run to determine the amount of improve-
ment from coordination.

Among the experimental results that can be reported, we know (from Cuny's work) that
the Kung-Leiserson systolic band-matrix multiplication algorithm requires 1.16 times longer to
execute in date-driven mode than in coordinated (i.e. synchronous) mode. Additionally, the

'duty" cycle of this systolic array is only 1/3 as originally defined, i.e. each processor is execut-
ing on only every third step. But using techniques developed by Cuny for this project, the
processors can be fully utilized.

Algorithms

The greater part of the application algorithms work has been done in collaboration with
Dennis Gannon and has been encouraged, but not directly supported by this contract. Of
special note is Gannon's work with Panetta ("Restructuring SIMPLE for the CHiP

Architecture', Purdue Technical Report, 1984) in which they report on how this classic Liver-
more benchmark can be run on the CHiP machine.

Linear Recurrences. Because the CHiP architecture is so novel, there was little guidance, in-
itially, on how to formulate effective algorithms. Our work on solving linear recurrences[7]
took up this challenge in a way that also suggested how known algorithms might exploit the
CHiP machine. Building on a technique developed by Chen, Kuck and Sameh, we developed
several algorithms to solve linear recurrences depending on various assumptions on where the
input is located. To see the basic idea, visualize a matrix in which rows are selected for

*elimination', first in adjacent pairs, then in pairs separated by a row of zeros, then by three
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zero rows, etc. This strategy naturally induces a binary tree structure on the rows of the
matrix which manifests itself as a binary tree structure in the CHiP machine's switch lattice.

The form of the tree varies depending on assumptions of where the data resides. The result-
ing algorithms are all optimal, based on both the 'unit' cost and "proportional to distance
cost measures.

Processor interconnect ion Structures. The graph that is embedded into the lattice when one
programs a processor interconnection structure reflects the communication structure of the

algorithm. As a means of exploring the general question of what types of communication can
be supported efficiently in the lattice, we studied a variety of processor interconnection
structures[8]. These include optimal embeddings for the ubiquitous binary tree and the torus.
Additionally we invented an ingenious technique for routing data down the corridors of a lat-
tice. (Recall that the corridor is the row of switches separating PEs.) One would expect that
a k corridor lattice could route k data paths between two processors, but it is possible to ach-
ieve 3k data paths, all distinct, by a technique called "lacing' which exploits the cross over
and diagonal edges that are provided in the normal eight degree lattices.

Daa bases. Although supercomputers are typically associated with purely numerical com-
putation, we have investigated non-numeric applications related to data bases[9,211. The
main results include the implementation of various known sorting algorithms on the CHiP
machine, and a unified processing paradigm for data base operations that is applicable to the
construction of a special purpose machine. Specifically, it is possible to formulate the opera-
tions of union, intersection, difference, remove duplicates and sorting as variants on one
processing algorithm. The key observation is that sorting algorithms augmented with some
tag bits can with additional hardware, do each of the five operations equally efficiently. If a
special purpose device is built with this approach, it may be prudent to choose a lattice that
has an aspect ration that is (n/log n) x (log n) rather than square in order to provide greater
access to external data storage.

Arch itecture

Perhaps the most visible contribution of the project is that collection of ideas known as the
CHiP Computer. Of these. the one attracting the greatest interest is the externally imposed- 4
configurability based on circuit switched regional communication. But there are many other
interesting aspects of the architecture that have attracted our attention.

Quantifying the CHiP machine. In the early papers describing the CHiP architecture [10,11],-
it was observed that certain characteristics of the design were variable and that the CHiP
"machinewas really a family of computers. The following question was left open: What is



the range of optimality for these characteristics? Although the question has concerned us
throughout the project, no really definitive answer has ever been given in print. It is ap-
propriate that we offer our best judgement as of the moment:

" a, the number of processors, will likely be a perfect square since there is no ap-
parent advantage with a non-square lattice, except for data base applications.
(Note that this statement depends on using the CHiP for general computation;
there could be an advantage for special purpose devices.) Furthermore, it is quite
convenient, e.g. for trees, that n be (an even) power of 2. It seems appropriate to
build computers with 64 to 4K processors; more processors are possible but further
architectural analysis is required.

• d, the degree of the PEs and switches, should be 8. There has been no need for
larger degrees and no consistent pattern to the cases where smaller degrees are ac-
ceptable.

S c, crossover level, must be 2 but 3 is frequently useful, especially for narrow cor-
ridor cases; if there is a significant cost (as there probably is) then 3 would be a
reasonable compromise from 4, the maximum.

0 w, internal corridor width, must be at least 2 which is completely adequate for a
64 PE lattice; in the 64 < n < 4096 range, 4 would probably suffice. Because ad-
ditional width is so expensive, especially in terms of pins, a w=2 choice could be a
fair tradeoff for large lattices.

* u, external corridor width, must equal internal width w, because anything less
represents a poor place for savings.

" p, phases, can be as low as 4 but 8 or 16 might be better choices provided the PE
memory is comparably larger than the 2K currently provided on the Pringle.

" m, local memory for PEs, should be as large as possible consistent with keeping
the memory on board; of course this trades off with functionality and features like
floating point take precedence over memory[12]. The current 2K limit is being
upgraded to a more realistic SK.

The remaining parameters such as data path width are so sensitive to issues such as pin
availability, clock skew, etc. that no general statement appears to be safe.

Pringle. Detailed emulation of a sequential computer by a sequential computer is often es-
timated to lose a factor of 1000 in performance; evaluating a parallel computer will lose an

additional factor at least proportional to the number of processors, but probably much more
if the communication is great. So, we built a hardware emulator in order to make realistic
sized runs feasible. But since it was premature to do a VLSI implementation, it was impos-
sible to exploit the-benefits of VLSI for the lattice. Consequently, our emulator is not a true
CHiP computer, since it replaces the lattice with a polled bus[13,22,231.
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The Pringle has 64 processing elements each of which is composed of an Intel 80

microprocessor, an Intel 8231 floating point processor, a 2K x 8 RAM and a 4K x 8 EPROMe.

The RAMs of the PEs are memory mapped into the address space of the controlling 8086

minicomputer for convenient down-loading and debugging. Ih PEs communicate with each

other by writing to an 8 bit latch or reading from a queue that is 16 bytes deep. The source

and destination of the /O is managed by a polling device that cyclically consults each proces-

sor to see if it wishes to write from any of its 8 logical ports; if so, the destination PE and

port number are found in an internal table (corresponding to the configuration setting), the

data is entered into the queue of the appropriate PE, and it is tagged with the correct port

number. This bus achieves a transfer rate of 64 Mbits/sec. using the designed 32MHz clock
rate. The processors achieve a rated speed of 64M (8-bit) instructions per second. The Pringle

was powered up and ran its first (diagnostic) program in March 1983 and the switch was

checked out and running by August 1983. By December 1983 a second copy was completed

(using parts funded by the National Science Foundation). By April 1984 the Pringle was fully

interfaced to its software environment and the first program, written and run from the Poker
System, was run on the Pringle. (One copy of the machine resides at Purdue University in

D. Gannon's lab; the Blue CHiP Project copy is at the University of Washington in the Blue

CHiP lab).

The External Input/Output (XIO) system has been designed, built and is now undergoing
checkout. The system uses four Winchester disks each of which has its controller connected

to a host 8086 minicomputer. Each of these host devices, in turn, is connected to eight one

chip microcomputers (Intel 8031s) which are, in turn, interfaced into the Pringle's switch.

Data for and from the external environment is viewed as moving between the XIO and the

processor lattice as a collection of "streamse, ie. data value sequences. To achieve this i-
lusion using normal files, an (as yet unimplemented) operating system views each file as a set
of k streams where the first (k field) record of the file is the first element of each stream.

The hosts read files from their disks and "break' then into streams which they route to the

"stream transfer" microcomputers. These machines serve as buffers from the streams, deliver-

ing values to the PEs as required.

Notice that our 64 processor Pringle requires 36 computers to support the XIO. It would be
accurate to conclude that in parallel computation, supporting the external input/output is

more than half of the problem.

'It should be mentioned that lntel Corporation donated a substantial amount of hardware (all of the proccors
and memories) thus stretching contract funds.



Software Support

We have produced an enormous amount of software to support the project's work includ-
ing:

" LAPSE, a VLSI layout programming language,

* CONFIG, an offline language for switch lattice programming,

* SIM, an event-based CHiP machine simulator,
plus numerous smaller incidental systems. Each of these has been of considerable use to the
project but not of sufficient external interest to be documented beyond project notes. T'here
is, however, one other somewhat more notable system.

Poker. Implemented in the C programming language to run on a VAX 11/780 under UNIX,
Poker is a parallel programming environment designed to support CHiP
programming[ 14-16,24A5. Poker provides facilities to assist the programmer with nearly all
phases of parallel programming: programming processor elements, programming processor
communication structures, compiling, assembling, coordinating, loading, running, specifying
input/output files, tracing and debugging. Poker programs can be emulated on a full Pringle
software emulator, they can run on the Pringle hardware, and one day, they will be able to
run on a CHiP computer.

The Poker environment uses two displays in its work station: a conventional display and a
1024 x 768 pixel bit mapped display for graphics support. It was written during the summer of
1982 by 10 very committed gentlemen: the "Poker Players'. Among its novel features is the
ability to program the communication structure of the algorithm (i.e. the lattice) using
graphics. The programmer 'draws a picture of the data paths to be used by the algorithm; a
compiler then converts the graphical form into a symbolic form suitable for down loading
into the Pringle. This is the first example of graphic programming of symbolic text.

Another novel feature is the way the Poker system handles processor to processor com-
munication. The I/0 behavior of a processor is based on a data driven semantics, i.e. the
writers write immediately (unless the buffer would overflow) and the readers wait until data
has arrived before proceeding. This scheme engenders considerable overhead due to
'handshaking'. However, an experimental version of Poker has the ability to coordinate the
programs using the synthesis algorithms described above.

'Many of the project personnel, including most of these fellows wet* receiving graduate fellowships from other
sources; this is another way in which contract funds hove been stretched.



The Poker system allows the programmer to "watch* the execution of his program on the

graphics display. Specifically, while the emulator is running, values that have been desig-

nated as 'trace variable? are continuously displayed on the screen. Thus, the programmer

watches the dynamic behavior of his program. At any time the programmer wishes he can

stop emulation and change (ie. poke) any of the displayed variables; he can then resume ex-

ecution. This facility is completely integrated into the environment so that the entire context

of the source program is available to the programmer while he is tracing and debugging.

Although Poker has been used in two advanced seminars on parallel computation with good

results, it is only a first step - the assembly language of parallel computing. Much more can

be done to relieve the programmer of the enormous complexity of specifying parallel al-

gorithms.

VLSI

The CHiP Computer has been designed to be easily and efficiently implemented in VLSI,

but it is premature to actually demonstrate such an implementation. This fact has not

prevented us from spending considerable effort exploring VLSI-related matters.

Switch Design. Over the course of the project, we have designed, perhaps, half a dozen dif-

ferent versions of the basic lattice switch. These have been used chiefly to evaluate different

architectural choices, so it was unnecessary to fabricate them. However, to test performance,

it is necessary to implement a design; so early in 1983 we fabricated our first switches."

We did not simply construct a switch. Rather, we built an experimental apparatus in

silicon which enabled us to investigate a variety of operating conditions. We instrumented

the system for the following set of conditions in any or all combinations: switch-to-switch on-

chip communication, switch-to-switch off-chip communication, switch-to-switch communica-

tion via a 3500 lambda delay line. The test setting was organized so that variables like delay

through signal capture pad drivers could be factored out of the measurement.

The fabricated chips were returned in April 1983 and found to be functionally correct on

the first time through fabrication! The detailed measurements indicate that the signal transit

time of the switch is on the order of 25 nanoseconds for nMOS technology.

"rU fabricationa w funded by the DARPA MOSIS facility and thus incurred no contract costs.



Processor Displacement Methodology. It is possible to be too good at designing VLSI chips!

Specifically, as silicon technology advances ahead of packaging technology and as better

parallel algorithms are developed, it is possible to place so much parallel processing circuitry

on a chip that it cannot be provided with data fast enough to keep the processors busy. The

problem has been over parallelized.

Clearly, unless there is greater bandwidth across the chip's perimeter, there is no way to get

more work done per unit time. But it is still possible to utilize the silicon. The strategy is to
multiplex the processor elements so that a larger problem can be solved in the given area at a

rate that matches the !/0 bandwidth. Such a scheme is called the Processor Displacement

Methodology[17] and it has been shown to be effective for problems such as dynamic pro-

gramming.

The CHiP Design Methodology. Managing the complexity of very large VLSI designs has

long been regarded as a problem that can be solved with hierarchical design methodologies.

The intent is to begin with small designs that can be composed with repetition to form larger

elements. The difficulty is that the methodology emphasizes the composition rather than the

repetition.

In the CHiP Design Methodology the repetition is emphasized over the hierarchy[18,26].

Specifically, the CHiP machine is used as an abstraction for programmable silicon. The desig-

ner specifies his chip functionally at the highest, ie. least detailed, level by programming the

CHiP machine to do the algorithm. This program will be composed of a small collection of

individual PE programs operating in parallel and repeated throughout the lattice. Next these

constituent PE programs are themselves coded as CHiP machine programs but using a simpler

set of primitives. Through a series of refinements, the algorithms of the constituent PEs of

level k are recoded as CHiP programs (using the whole lattice) at level k + 1 until the primi-

tive set of operations used for the program is so simple that they can either be directly imple-

mented as VLSI layouts or are stored in a cell library. At this point, the entire design can be

produced through substitution of the k + 1st layout into the cells of the kth layout. There is

a hierarchy, but it will likely be shallow (two or three levels) and the repetition of cells will

be emphasized.

Wafer Scale Integration. As it becomes more and more difficult to achieve higher VLSI

device densities through better fabrication techniques, it is natural to seek alternatives. One

such approach is to consider making the chip bigger, which in the limit means using the

whole silicon wafer for a single circuit.
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Our approach has been to solve what might be called the hlogical problems of wafer scale

integration by exploiting the CHiP architecture's configurability[19,20]. Specifically, we pat-

tern onto the wafer a CHiP lattice which has been augmented with extra, redundant switches.

Because of these extra switches and because switches are so small that the chance of failure is
unlikely, we can expect a high yield for the switches. This permits the switches to be used to

interconnect the functional processing elements. Since these are much larger, it is more likely

for them to be dysfunctional; they will be sparse over the lattice. Our strategy of connecting

them together restricts the distance that the communication signals must travel by linking PEs

that are in the same neighborhood. The result of the interconnection of the PEs by the

switches is a dense, logical CHiP lattice built from a sparse physical lattice.

The wafer scale approach has the desirable property that the algorithms for constructing

the lattice and for finding the functional PEs are very efficient. The price we pa, r this
efficiency is that not all processor elements will necessarily be used. Still, the ap ach has

proved effective. A systolic array processor can be built on a Y wafer produced b. iabrica-
tion line that achieves 20% yield an chips, and this processor will be a dense arra '6 x 16

elements at least 99% of the time. By additional tricks, it is possible to build a 28. = 784
systolic processors on a wafer using the ground rules described above.

Conclusion

The foregoing discussion concentrates on an enumeration of the specific, published results

of the project. There have also been numerous other results which have not made it into

print. These manifest themselves indirectly by influencing the way problems are chosen and
the way the directions of future research are selected.

It must be emphasized that the Blue CHiP Project as described in the proposal for

N00014-81-K-0360 met all of its goals. But it did much better than that. It seized upon

productive research areas, both hardware and software, and advanced the state-of-the-art
well beyond any reasonable expectations in 1980. This has caused us to develop even more
ambitious goals for the future. This contract has undoubtedly supported a Special Research

Opportunity. But perhaps the best result of the project is the project itself, the way in which

the quality and quantity of the results bear witness to the efficacy of vertically integrated
research.
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Figure lt major proj)ect accomplishments
and their interrelationships: An arrow
means that the source topic motivated or
solved a problem for the target topic.
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